TABLE 2—CHEMISTRY FACTOR FOR BASE METALS, °F

Copper,	Nickel, wt-%						
wt-%	0	0.20	0.40	0.60	0.80	1.00	1.20
0	20	20	20	20	20	20	20
0.01	20	20	20	20	20	20	20
0.02	20	20	20	20	20	20	20
0.03	20	20	20	20	20	20	20
0.04	22	26	26	26	26	26	26
0.05	25	31	31	31	31	31	31
0.06	28	37	37	37	37	37	37
0.07	31	43	44	44	44	44	44
0.08	34	48	51	51	51	51	51
0.09	37	53	58	58	58	58	58
0.10	41	58	65	65	67	67	67
0.11	45	62	72	74	77	77	77
0.12	49	67	79	83	86	86	86
0.13	53	71	85	91	96	96	96
0.14	57	75	91	100	105	106	106
0.15	61	80	99	110	115	117	117
0.16	65	84	104	118	123	125	125
0.17	69	88	110	127	132	135	135
0.18	73	92	115	134	141	144	144
0.19	78	97	120	142	150	154	154
0.20	82	102	125	149	159	164	165
0.21	86	107	129	155	167	172	174
0.22	91	112	134	161	176	181	184
0.23	95	117	138	167	184	190	194
0.24	100	121	143	172	191	199	204
0.25	104	126	148	176	199	208	214
0.26	109	130	151	180	205	216	221
0.27	114	134	155	184	211	225	230
0.28	119	138	160	187	216	233	239
0.29	124	142	164	191	221	241	248
0.30	129	146	167	194	225	249	257
0.31	134	151	172	198	228	255	266
0.32	139	155	175	202	231	260	274
0.33	144	160	180	205	234	264	282
0.34	149	164	184	209	238	268	290
0.35	153	168	187	212	241	272	298
0.36	158	173	191	216	245	275	303
0.37	162	177	196	220	248	278	308
0.38	166	182	200	223	250	281	313
0.39	171	185	203	227	254	285	317
0.40	175	189	207	231	257	288	320

[60 FR 65468, Dec. 19, 1995, as amended at 61 FR 39300, July 29, 1996]

§ 50.62 Requirements for reduction of risk from anticipated transients without scram (ATWS) events for light-water-cooled nuclear power plants.

(a) Applicability. The requirements of this section apply to all commercial light-water-cooled nuclear power plants, other than nuclear power reactor facilities for which the certifications required under §50.82(a)(1) have been submitted.

(b) *Definition.* For purposes of this section, *Anticipated Transient Without Scram* (ATWS) means an anticipated operational occurrence as defined in appendix A of this part followed by the failure of the reactor trip portion of

the protection system specified in General Design Criterion 20 of appendix A of this part.

(c) Requirements. (1) Each pressurized water reactor must have equipment from sensor output to final actuation device, that is diverse from the reactor trip system, to automatically initiate the auxiliary (or emergency) feedwater system and initiate a turbine trip under conditions indicative of an ATWS. This equipment must be designed to perform its function in a reliable manner and be independent (from sensor output to the final actuation device) from the existing reactor trip system.

(2) Each pressurized water reactor manufactured by Combustion Engineering or by Babcock and Wilcox must have a diverse scram system from the sensor output to interruption of power to the control rods. This scram system must be designed to perform its function in a reliable manner and be independent from the existing reactor trip system (from sensor output to interruption of power to the control rods).

(3) Each boiling water reactor must have an alternate rod injection (ARI) system that is diverse (from the reactor trip system) from sensor output to the final actuation device. The ARI system must have redundant scram air header exhaust valves. The ARI must be designed to perform its function in a reliable manner and be independent (from the existing reactor trip system) from sensor output to the final actuation device.

(4) Each boiling water reactor must have a standby liquid control system (SLCS) with the capability of injecting into the reactor pressure vessel a borated water solution at such a flow rate, level of boron concentration and boron-10 isotope enrichment, and accounting for reactor pressure vessel volume, that the resulting reactivity control is at least equivalent to that resulting from injection of 86 gallons per minute of 13 weight percent sodium pentaborate decahydrate solution at the natural boron-10 isotope abundance into a 251-inch inside diameter reactor pressure vessel for a given core design. The SLCS and its injection location must be designed to perform its function in a reliable manner. The SLCS

§ 50.63

initiation must be automatic and must be designed to perform its function in a reliable manner for plants granted a construction permit after July 26, 1984, and for plants granted a construction permit prior to July 26, 1984, that have already been designed and built to include this feature.

- (5) Each boiling water reactor must have equipment to trip the reactor coolant recirculating pumps automatically under conditions indicative of an ATWS. This equipment must be designed to perform its function in a reliable manner.
- (6) Information sufficient to demonstrate to the Commission the adequacy of items in paragraphs (c)(1) through (c)(5) of this section shall be submitted to the Commission as specified in §50.4.
- (d) Implementation. By 180 days after the issuance of the QA guidance for non-safety related components, each licensee shall develop and submit to the Commission, as specified in §50.4, a proposed schedule for meeting the requirements of paragraphs (c)(1)through (c)(5) of this section. Each shall include an explanation of the schedule along with a justification if the schedule calls for final implementation later than the second refueling outage after July 26, 1984, or the date of issuance of a license authorizing operation above 5 percent of full power. A final schedule shall then be mutually agreed upon by the Commission and licensee.

[49 FR 26044, June 26, 1984; 49 FR 27736, July 6, 1984, as amended at 51 FR 40310, Nov. 6, 1986; 54 FR 13362, Apr. 3, 1989; 61 FR 39301, July 29, 1996]

§ 50.63 Loss of all alternating current power.

- (a) Requirements. (1) Each light-water-cooled nuclear power plant licensed to operate must be able to withstand for a specified duration and recover from a station blackout as defined in §50.2. The specified station blackout duration shall be based on the following factors:
- (i) The redundancy of the onsite emergency ac power sources;
- (ii) The reliability of the onsite emergency ac power sources;

- (iii) The expected frequency of loss of offsite power; and
- (iv) The probable time needed to restore offsite power.
- (2) The reactor core and associated coolant, control, and protection systems, including station batteries and any other necessary support systems, must provide sufficient capacity and capability to ensure that the core is cooled and appropriate containment integrity is maintained in the event of a station blackout for the specified duration. The capability for coping with a station blackout of specified duration shall be determined by an appropriate coping analysis. Licensees are expected to have the baseline assumptions, analvses, and related information used in their coping evaluations available for NRC review.
- (b) Limitation of scope. Paragraph (c) of this section does not apply to those plants licensed to operate prior to July 21, 1988, if the capability to withstand station blackout was specifically addressed in the operating license proceeding and was explicitly approved by the NRC.
- (c) Implementation—(1) Information Submittal. For each light-water-cooled nuclear power plant licensed to operate on or before July 21, 1988, the licensee shall submit the information defined below to the Director of the Office of Nuclear Reactor Regulation by April 17, 1989. For each light-water-cooled nuclear power plant licensed to operate after the effective date of this amendment, the licensee shall submit the information defined below to the Director by 270 days after the date of license issuance
- (i) A proposed station blackout duration to be used in determining compliance with paragraph (a) of this section, including a justification for the selection based on the four factors identified in paragraph (a) of this section;
- (ii) A description of the procedures that will be implemented for station blackout events for the duration determined in paragraph (c)(1)(i) of this section and for recovery therefrom; and
- (iii) A list of modifications to equipment and associated procedures, if any, necessary to meet the requirements of paragraph (a) of this section, for the